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FLUCTUATIONS IN THE RATE OF FLOW DURING 

FILTRATION OF POLYMER SOLUTIONS 

M. M. Khasanov and I. N. Yagubov UDC 542.67:541.6 

This article demonstrates the possibility of a loss of stability in steady-state regimes involved in the 
filtration of polymer solutions, and we present also the construction of a mathematical model on the 
basis of whose analysis we have ascertained the unique features of self-oscillations and stochastic 
oscillations which arise in the region of  instability. 

Nonlinear effects in the filtration of non-Newtonian media may lead to a loss of stability in the steady filtration 

regime [1-4]. We observed such phenomena in a number of  laboratory experiments in which we studied the filtration 

of polyacrylamide (PAA) solutions through a column filled with quartz sand. The permeability of  the porous medium 

with respect to air amounted to 3.1.10 -12 m 2. During the course of the experiment the pressures at the inlet and outlet 

of the column were maintained at constant levels and the flow rate of the fluid being fil tered was measured over a rather 

prolonged period of time. The experiments demonstrated that with small pressure differences a steady flow rate is established. 
But when some critical pressure difference &p, is attained (dependent on the PAA concentration in the solution) the steady 

filtration regimes lose stability, and we observe unattenuated fluctuations in the flow rate. As an example, Fig. I shows 
the flow rate for  PAA with a concentration of  0.075% as a function of time for the case in which Ap = 0.6 MPa. 

The fluctuations in the flow rate are irregular in nature. The level of  irregularity (chaos) can be evaluated on 

the basis of the Hausdorf  scale for  the curve Q --- Q(t). The quantity D is determined [5, 6] during the process of  measuring 

the length I on the curve Q = Q(t) by means of  dividers with an opening ~7. The measurements are started from the origin 
Pp. Describing a circle of  radius ~ with the center at P0, we mark the point P1 at which the curve initially moves out 

of the circle. The second point P2 is obtained when the center of  the circle is shifted to the point PI, etc. If  l(r/) is used 

to denote the length of  the resulting broken line PoP1P2 .... approximately describing the curve, the length of  the curve 
will be [7, 8]. 

As demonstrated by direct measurement, for the experimental curves Q = Q(t) with not overly small r/, l(t/) ~ e-'~. 

Consequently, the graph of the functions Q = Q(t) can be assumed to be fractal curves having the dimension D = 7 + 1. 
It is natural to assume that the larger the dimension of the experimental curve, the less orderly the process whose image 

is represented by this curve. Thus, for  the curve in Fig. 1 we have D = 1.40. We should take note of  the fact that after 
establishment of  the chaotic filtration regime any further  increase in the pressure difference will not lead to an increase, 

but rather to a decrease in the Hausdorf  dimension for the curves Q --- Q(t), which gives evidence of  the more orderly 
progress of the filtration process in the case of larger values of Ap. 
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Fig. 1. The rate of  flow for the PAA solution as a function of time. 
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Fig. 2. Limit cycle corresponding to doubled period for B = 1.53, in coordinates Q = v(t), 

V = v(t - r). 

Let us examine the model which allows us to explain the appearance of fluctuations in the flow rate in the filtration 

of polymer solutions. For the sake of  simplicity we will resort to the identification approach according to which this 

system is treated as a transmission unit to whose input a constant quantity, i.e., the pressure difference &p, is transmitted, 

while at the output we observe a change in the filtration rate over time v(t) [9]. As was demonstrated in [10, 11], the 

nonsteady filtration process can be described within the framework of this approach by a concentrated model of the form 

Ap z dv (t) + v (t) = c (1) 
a (t) L 

As a consequence of the appearance of  polymer solutions exhibiting non-Newtonian properties, the filtration factor 

c depends on the rate of filtration. Since the structural transformation in polymer systems is characterized by retardation 

phenomena, this relationship can be represented in the form c It=t1 = c(v(ta - T)). 
Let us make the form of the function c(v) more specific. With this in mind, we should note that it follows from 

(1) that in the steady regime we have v = c(v)&p/L. With low rates of filtration for the polymer solutions,we note the 
. . . . . . . .  V zxpo 

existence of an initial pressure gradient ZXPo/L, so that the function c(v) must satasfy the condition hm -- 
woe(v)  L 

Following [10], we will assume that with rapid motion of the polymer clumps they congeal at the narrowest points 

within the pores. This leads to a reduction in the rate of filtration with large values of v. For the sake of definiteness 

we will present the function c(v) with the above-noted properties in the following form [12]: 

L v 
c(v)  = N > 1. (2) 

Apo 1 -~- Mv N ' 

Changing over to dimensionless variables t --* t/A, r = T/A, v ---, v /v  o, v o = M -l/N, and B = ZXp/&p o, from (1) and 

(2) we obtain that 

dv  (t) ~_ v (t) B y  (t - -  ~) 
ct--7- 1 + v N (t - -  ~_) (3) 

As demonstrated by analysis [12, 13], Eq. (3) exhibits an equilibrium point v -- 0 such that with B > 1 (i.e., with 

&P > &Po) loses stability. In this case, the system assumes a new equilibrium position v = v 1 = (B - 1) 1/N. Any further 
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Strange attractor corresponding to B -- 1.74, in coordinates Q = v(t), V -- v(t - 

Fig. 4. Limit cycle corresponding to B = 2.22, in coordinates Q -- v(t), V = v(t - r). 

increase in the parameter B leads to a situation at the critical point B = B o such that the steady regime of filtration at 

a rate v = v 1 also becomes unstable. Periodic and stochastic oscillations arise within the system. The value of B o can 

be derived by the method of  D divisions [14] and it is equal to B o = N/(N - 1 + see e), while the quantity ~ is determined 
from the equation r = -e cotan e, rr/2 < ~ < ~r. 

Let us present a number of  quantitative estimates. The duration ;~ of  the piezoconductivity is on the order of 

12/r [10, 11]. We determines this quantity on the basis of pressure-restoration curves read in advance from a column. 

We found that 3~ ~ 0.5-1 min. The delay time T depends on the polymer concentration and ranges from 5-10 min to 1- 

2 h [10]. For the polymer solutions used in our experiments we can assume that T ~ 5 min. Assuming that )~ ~ 1 rain, 

we obtained the estimate r ~ 5. It is easy to calculate that with such a value of  r, B 0 ~ N/(N - 2.1). We do not have the 

necessary data at hand to obtain estimates of the magnitude of  N, but the very fact that the loss of  stability in steady 

filtration for polymer solutions was experimentally observed serves as an indirect proof of  the fact that the quantity N 

is sufficiently large (for r = 5 we have at least N > 2.1). 

Choosing the function c(v) in the form of (2) assumes that with an increase in the filtration rate the quantity c 

tends to vanish. A more general situation arises when the coefficient of filtration in the case of  large v tends to some 

asymptotic value different from zero. We therefore conducted our calculations with a function c(v) of  the form 

c (v) -- v [exp ( - -  v N) .q- G / ( A v  + 1)], 

for which lira c (v) = G/A  _-~ O. 

We used an exponent in this expression, rather than an exponential function of  the form 1/(1 + v N) in order to 

test the stability of  the derived results relative to changing the means by which we parametrized the function c(v). 

Calculations showed that the effects produced by the appearance of periodic and stochastic self-oscillations are 

present in this case as well. We will present here the results obtained for A = 10, G = 2, N = 5, and r = 5. 

Initially, the increase in the parameter B leads through the period-doubling bifurcation circuit to the points B 1 

1.20, B 2 ~ 1.46, B z ~ 1.60 .... ; this sets up the chaotic regime. Any further increase in B causes the motion in the system 

to become ordered. Limit cycles arise and their periods, as B continues to grow, successively are reduced to half, i.e., 

inverse Feigenbaum bifurcations appear [ 15]. Finally, with some sufficiently large value of B a stationary state is once 
again established. 

To illustrate the described scenario, Figs. 2-4 show the attractors which correspond to a motion with period 2 
(B - 1.53), the chaotic regime (B --- 1.74), and motion with period 1 (B = 2.22). 

The reverse transition from chaos to the steady state, observed in our study of the proposed model, might serve 

as an explanation of  the fact that the increase in the pressure difference leads to a reduction in the irregularity of the 
functions Q = Q(t). 
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We have thus demonstrated that the fluctuations in the rate of filtration flow in the case of polymer solutions can 
be explained by three factors: the presence of an initial pressure gradient, the flow "blockage" effect of polymer molecule 
clusters, and the existence of some delay time in the processes of structural transformation in polymer systems. The qualitative 
conclusions drawn from an analysis of the proposed model are in agreement with the experimentally derived results. 

These results may find extensive application in the development of strategies to control the pumping of polymer 
solutions through oil-bearing strata. They make it possible, in particular, to specify pumping regimes which exclude 
the possibility of chaotic fluctuations. 

NOTATION 

p, pressure; Ap, pressure difference; Q, fluid flow rate; D, Hausdorf dimension; t, time; v, filtration rate; c, filtration 
factor; L, length of experimental column; )~, duration of piezoconductivity; g, coefficient of piezoconductivity; T, delay 
time; 7, A, G, N, positive-definite constants; B, bifurcation parameter. 
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